Notebook - Welcome to Notebook

Contact/Report Bugs
You can contact me at: bkenwright@xbdev.net












Simple deep neural networks tested with sine wave data trained using backpropagation 1 17 17 1 network to train a simple sine wave also plots the ideal and predicted in real time as it trains the network Be warned large networks with lots of layers is really really slow at training Some asserts scattered around to check basic array size aligment data let fp await fetch https cdn plot ly plotly 2 1 0 min js let ft await fp text var script document createElement script script src https cdn plot ly plotly 2 1 0 min js script innerHTML ft document head appendChild script const VARIANCE_W 0 5 const randomUniform min max return 0 123 Math random max min min const randomUniform min max Math random max min min const ru return randomUniform VARIANCE_W VARIANCE_W const layers 1 17 17 1 const maxLayerSize layers sort a b b a 0 const xordataset inputs 0 0 outputs 0 inputs 0 1 outputs 1 inputs 1 0 outputs 1 inputs 1 1 outputs 0 console assert xordataset 0 outputs length layers layers length 1 const weights Array layers length maxLayerSize maxLayerSize fill 0 const biases Array layers length maxLayerSize fill 0 const loutputs Array layers length maxLayerSize fill 0 const errors Array layers length maxLayerSize fill 0 const MAX_NEURONS_PER_LAYER maxLayerSize const NUM_LAYERS layers length for let i 0 i layers length 1 i for let k 0 k layers i i for let g 0 g layers i 1 g setWeight i k g ru function getBias layer neuron return biases layer MAX_NEURONS_PER_LAYER neuron function setBias layer neuron value biases layer MAX_NEURONS_PER_LAYER neuron value function setOutput layer neuron value loutputs layer MAX_NEURONS_PER_LAYER neuron value function getOutput layer neuron return loutputs layer MAX_NEURONS_PER_LAYER neuron function getWeight layer fromNeuron toNeuron return weights layer MAX_NEURONS_PER_LAYER MAX_NEURONS_PER_LAYER fromNeuron MAX_NEURONS_PER_LAYER toNeuron function setWeight layer fromNeuron toNeuron value weights layer MAX_NEURONS_PER_LAYER MAX_NEURONS_PER_LAYER fromNeuron MAX_NEURONS_PER_LAYER toNeuron value function setError layer neuron value errors layer MAX_NEURONS_PER_LAYER neuron value function getError layer neuron return errors layer MAX_NEURONS_PER_LAYER neuron let sigmoid x 1 0 1 0 Math exp x let sigmoidDerivative x x 1 x const relu x return Math max 0 0 x const reluDerivative x if x 0 0 return 1 0 return 0 0 const leakyRelu x alpha 0 01 return x 0 x alpha x const leakyReluDerivative x alpha 0 01 return x 0 1 alpha sigmoid leakyRelu sigmoidDerivative leakyReluDerivative let counter 0 const activate iin console assert iin length outputs 0 length console assert weights 0 length layers 0 console assert weights 0 0 length layers 1 console assert weights 1 length layers 1 console assert weights 1 0 length layers 2 counter for let i 0 i NUM_LAYERS i if i 0 for let k 0 k iin length k setOutput 0 k iin k else for let k 0 k layers i k var sum 0 0 for let b 0 b layers i 1 b sum getOutput i 1 b getWeight i 1 b k setOutput i k sigmoid sum getBias i k return getOutput NUM_LAYERS 1 0 const propagate target alpha 0 2 for let i NUM_LAYERS 1 i 0 i for let k 0 k layers i k if i NUM_LAYERS 1 let error target k getOutput i k sigmoidDerivative getOutput i k setError i k error else setError i k 0 0 for let g 0 g layers i 1 g let error getError i 1 g getWeight i k g sigmoidDerivative getOutput i k setError i k error for let i 0 i NUM_LAYERS i for let k 0 k layers i k if i NUM_LAYERS 1 for let g 0 g layers i 1 g var weight getWeight i k g weight alpha getOutput i k getError i 1 g setWeight i k g weight let bias getBias i k bias alpha getError i k setBias i k bias test the neural network using iteration loop xor dataset console log new Date for let epoch 0 epoch 10000 epoch let indexes Array from Array xordataset length keys indexes sort Math random 0 5 for let j of indexes activate xordataset j inputs propagate xordataset j outputs 0 2 if epoch 1000 0 let cost 0 for let j 0 j xordataset length j let o activate xordataset j inputs for let b 0 b xordataset j outputs length b cost Math pow xordataset j outputs b o b 2 cost 4 console log epoch epoch mean squared error cost for let i 0 i xordataset length i const result activate xordataset i inputs console log for input xordataset i inputs expected xordataset i outputs predicted result 0 toFixed 4 which is Math round result 0 xordataset i outputs 0 correct incorrect SINE WAVE let noSamples 50 let iteration 0 var trainingSet Function to shuffle data function shuffle array for let i array length 1 i 0 i const j Math floor Math random i 1 array i array j array j array i return array Function to create mini batches function createMiniBatches data batchSize let miniBatches for let i 0 i data length i batchSize miniBatches push data slice i i batchSize return miniBatches async function calcTotalError let totalError 0 for let tt 0 tt noSamples tt 1 nn value let amp await activate tt noSamples let val amp 0 2 0 1 0 ideal value let t 2 Math PI tt noSamples let mval Math sin t totalError totalError Math abs val mval let elem2 document getElementById error if elem2 undefined elem2 document createElement div elem2 id error document body appendChild elem2 elem2 innerHTML Error totalError iteration starts once the data has been loaded async function iterate iteration let elem1 document getElementById counter if elem1 undefined elem1 document createElement div elem1 id counter document body appendChild elem1 elem1 innerHTML Iteration iteration if iteration 10 0 only update graph every 5 iterations await plotData calcTotalError if trainingSet undefined console log creating dataset trainingSet for let tt 0 tt noSamples tt 1 let t 2 Math PI tt noSamples console assert t 0 t 1 let amp Math sin t 1 to 1 let ampNormalized amp 1 0 0 5 0 to 1 console assert ampNormalized 0 console assert ampNormalized 1 trainingSet push inputs tt noSamples outputs ampNormalized const NUM_EPOCHS 5 const BATCH_SIZE 20 for let epoch 0 epoch NUM_EPOCHS epoch let shuffledData shuffle trainingSet let miniBatches createMiniBatches shuffledData BATCH_SIZE for let miniBatch 0 miniBatch miniBatches length miniBatch let batches miniBatches miniBatch for let bat 0 bat batches length bat let datum batches bat await activate datum inputs await propagate datum outputs for let i 0 i trainingSet length i BATCH_SIZE let batch trainingSet slice i i BATCH_SIZE batch forEach datum activate datum inputs propagate datum outputs requestAnimationFrame iterate requestAnimationFrame iterate async function plotData plot trained data let x let y let y2 for let tt 0 tt noSamples tt 1 let t 2 Math PI tt noSamples let amp await activate tt noSamples let val amp 0 2 0 1 0 x push tt noSamples y push val y2 push Math sin t let plot1 document getElementById plot1 if plot1 undefined plot1 document createElement div plot1 id plot1 plot1 style width 600px plot1 style height 400px document body appendChild plot1 Plotly newPlot plot1 x y margin t 0 showSendToCloud true plot ideal data Plotly addTraces plot1 x y y2 end plotData deep neural network 1 time time index for input 17 17 hidden layers 1 amplitude

let bias getBias i k bias alpha getError i k setBias i k bias test the neural network using iteration loop xor dataset console log new Date for let epoch 0 epoch 10000 epoch let indexes Array from Array xordataset length keys indexes sort Math random 0 5 for let j of indexes activate xordataset j inputs propagate xordataset j outputs 0 2 if epoch 1000 0 let cost 0 for let j 0 j xordataset length j let o activate xordataset j inputs for let b 0 b xordataset j outputs length b cost Math pow xordataset j outputs b o b 2 cost 4 console log epoch epoch mean squared error cost for let i 0 i xordataset length i const result activate xordataset i inputs console log for input xordataset i inputs expected xordataset i outputs predicted result 0 toFixed 4 which is Math round result 0 xordataset i outputs 0 correct incorrect SINE WAVE let noSamples 50 let iteration 0 var trainingSet Function to shuffle data function shuffle array for let i array length 1 i 0 i const j Math floor Math random i 1 array i array j array j array i return array Function to create mini batches function createMiniBatches data batchSize let miniBatches for let i 0 i data length i batchSize miniBatches push data slice i i batchSize return miniBatches async function calcTotalError let totalError 0 for let tt 0 tt noSamples tt 1 nn value let amp await activate tt noSamples let val amp 0 2 0 1 0 ideal value let t 2 Math PI tt noSamples let mval Math sin t totalError totalError Math abs val mval let elem2 document getElementById error if elem2 undefined elem2 document createElement div elem2 id error document body appendChild elem2 elem2 innerHTML Error totalError iteration starts once the data has been loaded async function iterate iteration let elem1 document getElementById counter if elem1 undefined elem1 document createElement div elem1 id counter document body appendChild elem1 elem1 innerHTML Iteration iteration if iteration 10 0 only update graph every 5 iterations await plotData calcTotalError if trainingSet undefined console log creating dataset trainingSet for let tt 0 tt noSamples tt 1 let t 2 Math PI tt noSamples console assert t 0 t 1 let amp Math sin t 1 to 1 let ampNormalized amp 1 0 0 5 0 to 1 console assert ampNormalized 0 console assert ampNormalized 1 trainingSet push inputs tt noSamples outputs ampNormalized const NUM_EPOCHS 5 const BATCH_SIZE 20 for let epoch 0 epoch NUM_EPOCHS epoch let shuffledData shuffle trainingSet let miniBatches createMiniBatches shuffledData BATCH_SIZE for let miniBatch 0 miniBatch miniBatches length miniBatch let batches miniBatches miniBatch for let bat 0 bat batches length bat let datum batches bat await activate datum inputs await propagate datum outputs for let i 0 i trainingSet length i BATCH_SIZE let batch trainingSet slice i i BATCH_SIZE batch forEach datum activate datum inputs propagate datum outputs requestAnimationFrame iterate requestAnimationFrame iterate async function plotData plot trained data let x let y let y2 for let tt 0 tt noSamples tt 1 let t 2 Math PI tt noSamples let amp await activate tt noSamples let val amp 0 2 0 1 0 x push tt noSamples y push val y2 push Math sin t let plot1 document getElementById plot1 if plot1 undefined plot1 document createElement div plot1 id plot1 plot1 style width 600px plot1 style height 400px document body appendChild plot1 Plotly newPlot plot1 x y margin t 0 showSendToCloud true plot ideal data Plotly addTraces plot1 x y y2 end plotData deep neural network 1 time time index for input 17 17 hidden layers 1 amplitude

2dracecargame
3dplot
a4print
about
acejs
acejs2
acejs3
aessecurity
angularjs
animbackgroundimage
aseformat
assert
asteroidsjs
backgrounds01
backgrounds02
backgrounds03
barnsleyfern
base26
base64
bib
binary
bodypix
bouncy
box2dweb
breakoutjs
browserversion
buslanes
busybutton
bvhreader
calendar
candycrush
candycrush2
canvas
canvas2
canvas3
canvasmandelbrot
canvasmandelbrot2
canvasnumbers
canvaszoom
capsule
changingimages
chaosgame
chaosrandom
chaosrandomhisto
chaosrandomhisto2
chatgptusingopenai
chatgptusingopenai2
chatgptusingopenai3
checkboxtoggle
chinesetiles
classes
classfeatures
clipboardbutton
clonenode
codedropdown
codemirror
codemirror2
collada
colorpick
columnresizer
contextmenu
convnet
cookiebanner
countdown
countdown2
countdown3
crop
css3dbarchart
css3dbarchart2
css3dbook
css3dscene
csscube
csscube2
csscube3
csscubevideos
cssfilelist
csshas
csspulse
cssresizeaspect
cssspin
csszooming
csvtoarray
curleffect
customcheckbox
d3datamap
d3js
d3js10
d3js11
d3js2
d3js3
d3js4
d3js5
d3js6
d3js7
d3js8
d3js9
d3jsanimatedgrid
d3jsarctransition
d3jsarctransition2
d3jsaxis
d3jsaxischanging
d3jsbars
d3jsbrushing
d3jsbuslanes
d3jsbuslanes2
d3jscalendar
d3jscheat
d3jsclock
d3jscloudmap
d3jscogs
d3jscolors
d3jscovid
d3jscovid2
d3jscovid3
d3jsdashboard
d3jsdashboard2
d3jsdashboard3
d3jsdatakeyfunction
d3jsdensity
d3jsdragresizing
d3jsdragresizing2
d3jseach
d3jsease
d3jsevents
d3jsflower
d3jsforcegroups
d3jsforces
d3jsforces2
d3jsfractaltree
d3jsgeo
d3jsgroupbars
d3jsgroups
d3jsheatmap
d3jshex
d3jshierarchies
d3jshierarchies2
d3jshistogram
d3jshistogram2
d3jshistogram3
d3jshistogram4
d3jsinterpolate
d3jsjoin
d3jskmean
d3jskmean2
d3jsline
d3jsline2
d3jsline3
d3jsline4
d3jslinetransition
d3jslinetransition0
d3jslinetransition2
d3jsmaplocations
d3jsmaps
d3jsmaps2
d3jsmaps3
d3jsmisc
d3jsmisc2
d3jsmodule
d3jsmodulecolor
d3jsmultistyles
d3jsnobel
d3jsoverlappinggraphs
d3jspanel
d3jspie
d3jspieinterpolate
d3jssankey
d3jssankey2
d3jsscatter
d3jsshapes
d3jsslider
d3jsspending
d3jsspending2
d3jsspiralplot
d3jsspirograph
d3jssquare
d3jsstack
d3jsstackedbar
d3jsstackedbar2
d3jssunburst
d3jssunmoon
d3jssvglines
d3jssymbols
d3jstimelines
d3jsuk
d3jsvoronoi
d3scatterplot
d3timeline
d3timeline2
datalist
datamuse
date
dblclickhighlight
deviceorientation
dictionaryapi
dockermenu
doodlepad
downloadgif
dragdroplistitems
dragrotateresizediv
dragrotateresizediv2
dragrotateresizediv3
dragrotateresizediv4
dragrotateresizefontsize
dragselectbrush
drawlinesdiv
dropdown
dualquaternionimages
dynamicgrid
easefunctions
easeinterpolate3dplots
echart
echart2
echart3
encapsulation
epubviewer
errorstack
excalidraw
excalidraw2
excalidraw3
excalidraw5
expandable
faker
fetchplus
fileupload
fixedtopbar
fluiddynamics
fluiddynamics2
fluiddynamics3
fluidsmokedynamics
fluidsmokedynamics2
fonts
fonts2
footerbar
fractalmaze
fractalmaze2
fractalnoiseimage
fractals
fractals2
fractaltree
freesvg
fresnel
froggerjs
gantt
gifgiphyapi
gifhex
gltffromscratch
gradients
griditems
griditems2
griditems3
griditems4
gridworms
heat
hexview
hexview2
highlight
icons
icons2
iframes
ik
imagetracertosvg
imgur
inputfile
invadersjs
ipynb
ipynb2
ipynb3
ipynb4
isbn13
isbn2
jpghex
jquery
jquery2
jqueryui
jqueryui2
jsdraganddrop
jsfire
jslint
jsobfuscate
jsraytracer
jstree
jstree2
jszip
jszipimages
jszipread
keyframes
l2dwidget
lda
leftmenu
less
less2
lineargradientimage
linenumbers
loadimagefromfile
makepdf
maps
markdown
markdown2
markdownalerts
markdownalerts2
markdownbookmarks
markovimage
markovpixelblocks
mathjax
matrices
matsandvects
mazegamejs
md2tex
metrotiles
metrowindows
milestones
minkowski2dboxes
misc
misc2
modules
myipdetails
mymodplotly
neataptic
networkstructures
networkstructures2
neural_network_drawshape
neural_network_plot_in_vs_out
neuralnetworkarrays
neuralnetworkblocks
neuralnetworksinewave
neuralnetworksnolibs
neuralnetworkvisualization
number
obj
objtojson
openaiimages
opencv
opencv2
opencv3
opencv4
opencv5
outline
p2
p5fractalleaf
p5fractalshape
p5js
p5js2
p5js3
p5jsanimatedcover
p5mengercube
p5snowflakes
palindrome
panel
parallax
paste
paste2
pasteimgfromurl
pdfjs
pdfjs2
pdfkit
pdfkit2
pdfkit3
pdfkit4
pdfkit5
pdfkit6
pdfmake
pdfmake2
pdfmake3
pdfmake4
pdfmake5
pdfmake6
perlin
perlin2
perlin3
perspective
pexels
pixelgridpattern
playground
plotly
plotlynoise
plotlyranddist
plyloader
plyloader2
pngtxtencoder
pongjs
pptxgenjs
prettycode
prism
prn
problems
progress
pseudorandom
px2svg
python
quotes
racergame
random
randomcalcpie
randomgenerator
randomprofilepatterns
randomsinhistogram
randomstring
rating
rayambient
raymonte
raymonteprogressive
raymonteprogressive2
raymontewarmstart
reexpcross
reexpcross2
regex
regexbib
regexpfixbib
regexpmultiline
repeatwordsregexp
resizabletable
resizabletable2
revealjs
revealjs2
revealjsmulti
ritalanguage
ritalanguage2
ritalanguage3
rotateimg
rough
rsapublicprivatekeys
rss
rss2
sankey
scrappingsvg
scrolltext
scrolltext2
scrollwidth
sdf2dcanvas
sdfboxinboxtwist
sdfchessbishop
sdfchessking
sdfchessknight
sdfchesspawn
sdfchessqueen
sdfchessrook
sdfhollowbox
setintervalexception
shareurl
shuffle
sidecomment
similarity
simplehighlighter
simpleplatformgamejs
sinecanvas
sliderpopout
slides
smileys
snowfall
snowman
sound
soundsignal
sphererayintersection
springs
sqljs
steganography
stereogram
stringmatching
sudoku
sudoku2
sudoku3
svg
svgchaos
svgdragresize
svgdragresize2
svgdragresize3
svgdragrotate
svgdrawing
svglines
svglines2
svglines3
svglines4
svglines5
svglinesmandelbrot
svgpathsdragrotate
svgpathsdragrotateresize
svgpie
svgpie2
svgpie3
svgpiepath
svgpiepath2
svgrandomfaces
symbols
synaptic
synaptic2
synonyms
tablerotatecells
tablerotatecells2
tablerotatecells3
tablerotatecells3b
tablerotatecells4
tables
tablezebra
tabularjs
tabularjs2
tabulatordownload
tagcanvas
tensorflowgan
tensorflowjs
tensorflowjsbasic
tensorflowjscnn
tensorflowjssinewave
tensorflowjssound
tensorflowmobilenet
tetrahedronfractal
tetrahedronfractalfolding
tetris
textarea
textareaauto
textareadiv
textareadiv2
textmaskimage
theirorthere
thesaurus
threejs
threejs2
threejs3
threejs4
threejsgltf
threejstokyo
tiles
toaster
tooltip
transition
transitionexpandabledropdown
treeview
treeview2
tricks
tshirt
tshirt2
tshirt3
turningpages
unsplash
urlblob
urlblob2
userdefinepoints
vector
videos
videos2
visualsort
vue
w2ui
w2uientertextdialog
webcam
webgl
webgl2
webgl3
webgl4
webgl5
webglbasic1
webglbasic2
webglcube
webglfov
webglfrustum
webgljson
webglleaves
webgllighting
webglorthographic
webglpoints1
webglpoints2
webglpoints3
webglsquare
webgltexture1
webgltexture2
webgltexture3
webgltransforms
webgltriangle
webgpu
webgpu10
webgpu11
webgpu12
webgpu13
webgpu14
webgpu15
webgpu16
webgpu17
webgpu2
webgpu3
webgpu4
webgpu5
webgpu6
webgpu7
webgpu8
webgpu9
webgpubars
webgpubuffers
webgpubuffers2
webgpucellnoise
webgpuclouds
webgpuclydescope
webgpucompute
webgpucubemap
webgpucubemap2
webgpudeferred
webgpudepth
webgpudof
webgpudrops
webgpuetha
webgpufire
webgpufractalcubes
webgpuglassrain
webgpugltf
webgpugltf2
webgpugrass
webgpugrid
webgpukernel
webgpukleinian
webgpulabupdates
webgpulighting
webgpumandelbrot
webgpumeta3d
webgpumetaballs
webgpumouse
webgpunoise
webgpunormalmapping
webgpuobj
webgpuparallax
webgpuparallax2
webgpuparallax3
webgpuparallaxshadow
webgpuparallaxshadow2
webgpupixel
webgpuquad
webgpuray1
webgpuraytracing
webgpuraytracing2
webgpushadowmaps
webgpushadowmaps2
webgpusierpinski2d
webgpusierpinski3d
webgpusinusoid
webgpussao
webgpustadiumobj
webgpuswirl
webgputestpipe3
webgputoon
webgputopology
webgputt
webgpuvolcloud
webgpuwater
webgpuwireframe
webgpuwireframe2
webpcanvas
webworkers
webxr
webxr2
wiggly
wikipedia