Notebook - Welcome to Notebook

Contact/Report Bugs
You can contact me at: bkenwright@xbdev.net












WebNN The WebNN API is a JavaScript API that enables web applications to perform machine learning inference with high efficiency It allows developers to leverage hardware acceleration for neural network computations directly within web browsers WebNN has been in development since 2021 with the First Public Working Draft published on June 22 2021 The current version is now almost stable with very few changes The official documentation and details for the API are online free and open source https www w3 org TR webnn What if you don t have WebNN You can still run Machine Learning projects in your browser but you ll have to depend on external libraries load them on the fly ome popular web libraries for machine learning that you can use in a browser TensorFlow js ml5 js Brain js Synaptic js ConvNetJS The following will take you through getting started with WebNN See https xbdev net internet webnn for more tutorials news projects and books Start simple do we have the WebNN API on this browser console log WebNN API navigator ml if navigator ml console log YAHHHH You have WebNN else console log Oh no NO NO NO You do not have WebNN it must be disabled go into your browser flags e g chrome flags firefox flags and enable it Let s do some reconneson see what API methods are avilable within the navigator ml handle for let f in navigator ml console log f f Not much available navigator ml the only method is createContext we can t get access to anything until we have created a context Get the WebNN context const context await navigator ml createContext console log context context Important createContext returns a promse so it does not happen imediately it has to do some setup so we add the await to make sure nothing continues until it s done Print out what we have now for let c in context console log c A really juicy thing to note about the createContext is it takes arguments so later on it means you can link it to other features API The default if you don t pass anything is to that manages the resources and facilitates the compilation and execution of the neural network graph using internal settings However you can specify the context use webgpu this means you can have the WebNN work seamlessly with the WebGPU API which is great so you can use shared GPU memory for both graphics simulations and machine learning WebGPU offsets compute shaders so you can perform complex operations computations on the data without any graphics purely GPU compute power which you can interface with the WebNN API WebNN minimal working example for XOR document body style minHeight 600px Check if WebNN API is available if navigator ml console error WebNN API is not available in this browser return console log Yes YES We have WebNN starting XOR demo note dataType used to be called type note shape used to be called dimensions note context dispatch used to be context compute Define the context and graph builder const context await navigator ml createContext const builder new MLGraphBuilder context Define input tensors A and B and the output tensor C const inputShape 2 2 2x2 matrix const inputType float32 Create input placeholders const A builder input A dataType inputType shape inputShape const B builder input B dataType inputType shape inputShape Perform addition const C builder add A B Build the graph const graph await builder build C Create reusable tensors for inputs and output const inputTensorA inputTensorB outputTensorC await Promise all context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape readable true const inputA new Float32Array 1 0 2 0 3 0 4 0 A 1 2 3 4 const inputB new Float32Array 0 5 1 5 2 5 3 5 B 0 5 1 5 2 5 3 5 Initialize inputs context writeTensor inputTensorA inputA A 1 2 3 4 context writeTensor inputTensorB inputB B 0 5 1 5 2 5 3 5 Execute the graph const inputs A inputTensorA B inputTensorB const outputs C outputTensorC context dispatch graph inputs outputs Read and print the result const result await context readTensor outputTensorC console log Output Tensor C new Float32Array result Expected 1 5 3 5 5 5 7 5 We have the data but append a visualization on to the end to draw the input vs output const plotData async inputA inputB output let ps await fetch https cdn plot ly plotly 2 1 0 min js let pt await ps text var script document createElement script script src https cdn plot ly plotly 2 1 0 min js script innerHTML pt document head appendChild script let div document createElement div document body appendChild div div style width 400px div style height 400px div id plot Prepare data for visualization const indices A 0 A 1 A 2 A 3 Plotly data const traceA x indices y Array from inputA type bar name Input A const traceB x indices y Array from inputB type bar name Input B const traceC x indices y Array from output type bar name Output A B const layout title Inputs and Output of WebNN Computation xaxis title Element Index yaxis title Value barmode group Plot using Plotly Plotly newPlot plot traceA traceB traceC layout plotData inputA inputB result WebNN minimal working example for XOR document body style minHeight 600px Check if WebNN API is available if navigator ml console error WebNN API is not available in this browser return console log Yes YES We have WebNN starting XOR demo note dataType used to be called type note shape used to be called dimensions note context dispatch used to be context compute Define the context and graph builder const context await navigator ml createContext const builder new MLGraphBuilder context Define input tensors A and B and the output tensor C const inputShape 2 2 2x2 matrix const inputType float32 Create input placeholders const A builder input A dataType inputType shape inputShape const B builder input B dataType inputType shape inputShape Perform addition const C builder add A B Build the graph const graph await builder build C Create reusable tensors for inputs and output const inputTensorA inputTensorB outputTensorC await Promise all context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape readable true const inputA new Float32Array 1 0 2 0 3 0 4 0 A 1 2 3 4 const inputB new Float32Array 0 5 1 5 2 5 3 5 B 0 5 1 5 2 5 3 5 Initialize inputs context writeTensor inputTensorA inputA A 1 2 3 4 context writeTensor inputTensorB inputB B 0 5 1 5 2 5 3 5 Execute the graph const inputs A inputTensorA B inputTensorB const outputs C outputTensorC context dispatch graph inputs outputs Read and print the result const result await context readTensor outputTensorC const result0 new Float32Array result console log Output Tensor C result0 Expected 1 5 3 5 5 5 7 5 We have the data but append a visualization on to the end to draw the input vs output as a table let div document createElement div document body appendChild div div innerHTML style table border collapse collapse width 50 margin 20px auto font family Arial sans serif th td border 1px solid ddd text align center padding 8px th background color f4f4f4 caption font weight bold margin bottom 10px style table id resultTable caption WebNN Computation Inputs and Output caption thead tr th Index th th Input A th th Input B th th Output A B th tr thead tbody tbody table const populateTable inputA inputB output const tbody document createElement table document body appendChild tbody const tbody document querySelector resultTable tbody Clear existing rows tbody innerHTML Populate the table rows for let i 0 i inputA length i const row document createElement tr Index cell const indexCell document createElement td indexCell textContent i row appendChild indexCell Input A cell const inputACell document createElement td inputACell textContent inputA i row appendChild inputACell Input B cell const inputBCell document createElement td inputBCell textContent inputB i row appendChild inputBCell Output cell const outputCell document createElement td outputCell textContent output i row appendChild outputCell tbody appendChild row populateTable inputA inputB result0 Memory and Arrays A useful note about memory and arrays with WebNN In JS you ve got numbers and numbers are numbers no way of differentiating the different types with the number type So JS has the additional Float32Array and Int32Array types so we can work with real numbers When we move over to WebNN we need to use tensor arrays which are created with context createTensor This is similar to working with WebGPU you need to create memory buffers on the GPU and you ll have WebGPU buffers which you create with device createBuffer Once you ve created the tensor array you can copy data into and out of it However you have to remember the training and operations are done using the tensor arrays html lang en head meta charset UTF 8 meta name viewport content width device width initial scale 1 0 title xbdev net Neural Network Sine Wave Example title script src https cdn jsdelivr net npm chart js script style canvas max width 90 margin 20px auto display block style head body h2 style text align center Neural Network Sine Wave Example h2 canvas id sineWaveChart canvas script async function neuralNetworkSineWave if navigator ml console error WebNN API is not available in this browser return const context await navigator ml createContext const builder new MLGraphBuilder context 1 Generate Sine Wave Input const numPoints 100 const x Array from length numPoints _ i i 10 const sineInput new Float32Array x map v Math sin v 2 Define Neural Network Layers const inputShape numPoints 1 const input builder input input dataType float32 shape inputShape const weights builder constant dataType float32 shape 1 1 new Float32Array 0 8 Weight for scaling const bias builder constant dataType float32 shape 1 new Float32Array 0 2 Bias Linear transformation y x weight bias const output builder add builder matmul input weights bias 3 Build and Initialize Graph const graph await builder build output const inputTensor await context createTensor dataType float32 shape inputShape writable true const outputTensor await context createTensor dataType float32 shape inputShape readable true 4 Write Input and Execute the Graph context writeTensor inputTensor sineInput const inputs input inputTensor const outputs output outputTensor context dispatch graph inputs outputs 5 Read the Output const outputBuffer await context readTensor outputTensor const outputArray new Float32Array outputBuffer 6 Plot the Input vs Output plotSineWave x sineInput outputArray function plotSineWave x input output const ctx document getElementById sineWaveChart getContext 2d new Chart ctx type line data labels x datasets label Sine Wave Input data Array from input borderColor blue fill false tension 0 1 label Neural Network Output data Array from output borderColor red fill false tension 0 1 options responsive true plugins legend position top scales x title display true text X Time y title display true text Y Value Run the example neuralNetworkSineWave script body html

ensorC await Promise all context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape writable true context createTensor dataType inputType shape inputShape readable true const inputA new Float32Array 1 0 2 0 3 0 4 0 A 1 2 3 4 const inputB new Float32Array 0 5 1 5 2 5 3 5 B 0 5 1 5 2 5 3 5 Initialize inputs context writeTensor inputTensorA inputA A 1 2 3 4 context writeTensor inputTensorB inputB B 0 5 1 5 2 5 3 5 Execute the graph const inputs A inputTensorA B inputTensorB const outputs C outputTensorC context dispatch graph inputs outputs Read and print the result const result await context readTensor outputTensorC const result0 new Float32Array result console log Output Tensor C result0 Expected 1 5 3 5 5 5 7 5 We have the data but append a visualization on to the end to draw the input vs output as a table let div document createElement div document body appendChild div div innerHTML style table border collapse collapse width 50 margin 20px auto font family Arial sans serif th td border 1px solid ddd text align center padding 8px th background color f4f4f4 caption font weight bold margin bottom 10px style table id resultTable caption WebNN Computation Inputs and Output caption thead tr th Index th th Input A th th Input B th th Output A B th tr thead tbody tbody table const populateTable inputA inputB output const tbody document createElement table document body appendChild tbody const tbody document querySelector resultTable tbody Clear existing rows tbody innerHTML Populate the table rows for let i 0 i inputA length i const row document createElement tr Index cell const indexCell document createElement td indexCell textContent i row appendChild indexCell Input A cell const inputACell document createElement td inputACell textContent inputA i row appendChild inputACell Input B cell const inputBCell document createElement td inputBCell textContent inputB i row appendChild inputBCell Output cell const outputCell document createElement td outputCell textContent output i row appendChild outputCell tbody appendChild row populateTable inputA inputB result0 Memory and Arrays A useful note about memory and arrays with WebNN In JS you ve got numbers and numbers are numbers no way of differentiating the different types with the number type So JS has the additional Float32Array and Int32Array types so we can work with real numbers When we move over to WebNN we need to use tensor arrays which are created with context createTensor This is similar to working with WebGPU you need to create memory buffers on the GPU and you ll have WebGPU buffers which you create with device createBuffer Once you ve created the tensor array you can copy data into and out of it However you have to remember the training and operations are done using the tensor arrays html lang en head meta charset UTF 8 meta name viewport content width device width initial scale 1 0 title xbdev net Neural Network Sine Wave Example title script src https cdn jsdelivr net npm chart js script style canvas max width 90 margin 20px auto display block style head body h2 style text align center Neural Network Sine Wave Example h2 canvas id sineWaveChart canvas script async function neuralNetworkSineWave if navigator ml console error WebNN API is not available in this browser return const context await navigator ml createContext const builder new MLGraphBuilder context 1 Generate Sine Wave Input const numPoints 100 const x Array from length numPoints _ i i 10 const sineInput new Float32Array x map v Math sin v 2 Define Neural Network Layers const inputShape numPoints 1 const input builder input input dataType float32 shape inputShape const weights builder constant dataType float32 shape 1 1 new Float32Array 0 8 Weight for scaling const bias builder constant dataType float32 shape 1 new Float32Array 0 2 Bias Linear transformation y x weight bias const output builder add builder matmul input weights bias 3 Build and Initialize Graph const graph await builder build output const inputTensor await context createTensor dataType float32 shape inputShape writable true const outputTensor await context createTensor dataType float32 shape inputShape readable true 4 Write Input and Execute the Graph context writeTensor inputTensor sineInput const inputs input inputTensor const outputs output outputTensor context dispatch graph inputs outputs 5 Read the Output const outputBuffer await context readTensor outputTensor const outputArray new Float32Array outputBuffer 6 Plot the Input vs Output plotSineWave x sineInput outputArray function plotSineWave x input output const ctx document getElementById sineWaveChart getContext 2d new Chart ctx type line data labels x datasets label Sine Wave Input data Array from input borderColor blue fill false tension 0 1 label Neural Network Output data Array from output borderColor red fill false tension 0 1 options responsive true plugins legend position top scales x title display true text X Time y title display true text Y Value Run the example neuralNetworkSineWave script body html

2dracecargame
3dplot
a4print
about
acecustomkeywords
acecustomkeywords2
acejs
acejs2
acejs3
aessecurity
angularjs
animbackgroundimage
aseformat
assert
asteroidsjs
backgrounds01
backgrounds02
backgrounds03
barnsleyfern
base26
base64
bib
binary
bodypix
bouncy
box2dweb
breakoutjs
browserversion
buslanes
busybutton
bvhreader
calendar
candycrush
candycrush2
canvas
canvas2
canvas3
canvasmandelbrot
canvasmandelbrot2
canvasnumbers
canvaszoom
capsule
car2dsimulationphysics
car2dsimulationphysics2
changingimages
chaosgame
chaosrandom
chaosrandomhisto
chaosrandomhisto2
chatgptusingopenai
chatgptusingopenai2
chatgptusingopenai3
checkboxtoggle
chinesetiles
classes
classfeatures
clipboardbutton
clonenode
codedropdown
codemirror
codemirror2
collada
colorpick
columnresizer
contextmenu
convnet
cookiebanner
countdown
countdown2
countdown3
crop
css3dbarchart
css3dbarchart2
css3dbook
css3dscene
csscube
csscube2
csscube3
csscubevideos
cssfilelist
csshas
csspulse
cssresizeaspect
cssspin
csszooming
csvtoarray
curleffect
customcheckbox
d3datamap
d3js
d3js10
d3js11
d3js2
d3js3
d3js4
d3js5
d3js6
d3js7
d3js8
d3js9
d3jsanimatedgrid
d3jsarctransition
d3jsarctransition2
d3jsaxis
d3jsaxischanging
d3jsbars
d3jsbrushing
d3jsbuslanes
d3jsbuslanes2
d3jscalendar
d3jscheat
d3jsclock
d3jscloudmap
d3jscogs
d3jscolors
d3jscovid
d3jscovid2
d3jscovid3
d3jsdashboard
d3jsdashboard2
d3jsdashboard3
d3jsdatakeyfunction
d3jsdensity
d3jsdragresizing
d3jsdragresizing2
d3jseach
d3jsease
d3jsevents
d3jsflower
d3jsforcegroups
d3jsforces
d3jsforces2
d3jsfractaltree
d3jsgeo
d3jsgroupbars
d3jsgroups
d3jsheatmap
d3jshex
d3jshierarchies
d3jshierarchies2
d3jshistogram
d3jshistogram2
d3jshistogram3
d3jshistogram4
d3jsinterpolate
d3jsjoin
d3jskmean
d3jskmean2
d3jsline
d3jsline2
d3jsline3
d3jsline4
d3jslinetransition
d3jslinetransition0
d3jslinetransition2
d3jsmaplocations
d3jsmaps
d3jsmaps2
d3jsmaps3
d3jsmisc
d3jsmisc2
d3jsmodule
d3jsmodulecolor
d3jsmultistyles
d3jsnobel
d3jsoverlappinggraphs
d3jspanel
d3jspie
d3jspieinterpolate
d3jssankey
d3jssankey2
d3jsscatter
d3jsshapes
d3jsslider
d3jsspending
d3jsspending2
d3jsspiralplot
d3jsspirograph
d3jssquare
d3jsstack
d3jsstackedbar
d3jsstackedbar2
d3jssunburst
d3jssunmoon
d3jssvglines
d3jssymbols
d3jstimelines
d3jsuk
d3jsvoronoi
d3scatterplot
d3timeline
d3timeline2
datalist
datamuse
date
dblclickhighlight
deviceorientation
dictionaryapi
dockermenu
doodlepad
downloadgif
dragdroplistitems
dragrotateresizediv
dragrotateresizediv2
dragrotateresizediv3
dragrotateresizediv4
dragrotateresizefontsize
dragselectbrush
drawlinesdiv
dropdown
dualquaternionimages
dynamicgrid
easefunctions
easeinterpolate3dplots
echart
echart2
echart3
encapsulation
epubviewer
errorstack
excalidraw
excalidraw2
excalidraw3
excalidraw5
expandable
faker
fetchplus
fileupload
fixedtopbar
fluiddynamics
fluiddynamics2
fluiddynamics3
fluidgaswatergl
fluidsmokedynamics
fluidsmokedynamics2
fonts
fonts2
footerbar
fractalmaze
fractalmaze2
fractalnoiseimage
fractals
fractals2
fractaltree
freesvg
fresnel
froggerjs
gantt
gifgiphyapi
gifhex
gltffromscratch
gradients
griditems
griditems2
griditems3
griditems4
gridworms
happyfont
heat
hexview
hexview2
highlight
icons
icons2
iframes
ik
imagetracertosvg
imgur
inputfile
invadersjs
ipynb
ipynb2
ipynb3
ipynb4
isbn13
isbn2
jpghex
jquery
jquery2
jqueryui
jqueryui2
jsdraganddrop
jsfire
jslint
jsobfuscate
jsraytracer
jstree
jstree2
jszip
jszipimages
jszipread
keyboardpiano
keyframes
l2dwidget
lcpsolverrigidbodies
lda
leftmenu
less
less2
lineargradientimage
linenumbers
loadimagefromfile
makepdf
maps
markdown
markdown2
markdown3
markdownalerts
markdownalerts2
markdownbookmarks
markovimage
markovpixelblocks
mathjax
matrices
matsandvects
mazegamejs
md2tex
metrotiles
metrowindows
milestones
minkowski2dboxes
misc
misc2
modules
myipdetails
mymodplotly
neataptic
networkstructures
networkstructures2
neural_network_drawshape
neural_network_plot_in_vs_out
neuralnetworkarrays
neuralnetworkblocks
neuralnetworksinewave
neuralnetworksnolibs
neuralnetworkvisualization
noiseflowfield
noiseflowfield2
noiseflowfield3
noiseflowfield4
noiseflowfield5
noiseflowfield6
number
obj
objtojson
openaiimages
opencv
opencv2
opencv3
opencv4
opencv5
outline
p2
p5fractalleaf
p5fractalshape
p5js
p5js2
p5js3
p5jsanimatedcover
p5mengercube
p5snowflakes
palindrome
panel
parallax
paste
paste2
pasteimgfromurl
pdfjs
pdfjs2
pdfkit
pdfkit2
pdfkit3
pdfkit4
pdfkit5
pdfkit6
pdfmake
pdfmake2
pdfmake3
pdfmake4
pdfmake5
pdfmake6
perlin
perlin2
perlin3
perspective
pexels
pixelgridpattern
playground
plotly
plotlynoise
plotlyranddist
plyloader
plyloader2
pngtxtencoder
pongjs
pptxgenjs
prettycode
prism
prn
problems
progress
pseudorandom
px2svg
python
quotes
racergame
random
randomcalcpie
randomgenerator
randomprofilepatterns
randomsinhistogram
randomstring
rating
rayambient
raymonte
raymonteprogressive
raymonteprogressive2
raymontewarmstart
reexpcross
reexpcross2
regex
regexbib
regexpfixbib
regexpmultiline
repeatwordsregexp
resizabletable
resizabletable2
revealjs
revealjs2
revealjsmulti
rigidbodyspheres2d
rigidbodyspheres3
rigidbodysphereslopetangent
ritalanguage
ritalanguage2
ritalanguage3
rotateimg
rough
rsapublicprivatekeys
rss
rss2
sankey
scrappingsvg
scrolltext
scrolltext2
scrollwidth
sdf2dcanvas
sdfboxinboxtwist
sdfchessbishop
sdfchessking
sdfchessknight
sdfchesspawn
sdfchessqueen
sdfchessrook
sdfhollowbox
setintervalexception
shareurl
shuffle
sidecomment
similarity
simplehighlighter
simpleplatformgamejs
sinecanvas
sliderpopout
slides
smileys
snowfall
snowman
sound
soundsignal
sphererayintersection
springs
sqljs
steganography
stereogram
stringmatching
sudoku
sudoku2
sudoku3
svg
svgchaos
svgdragresize
svgdragresize2
svgdragresize3
svgdragrotate
svgdrawing
svglines
svglines2
svglines3
svglines4
svglines5
svglinesmandelbrot
svgpathsdragrotate
svgpathsdragrotateresize
svgpie
svgpie2
svgpie3
svgpiepath
svgpiepath2
svgrandomfaces
symbols
synaptic
synaptic2
synonyms
tablerotatecells
tablerotatecells2
tablerotatecells3
tablerotatecells3b
tablerotatecells4
tables
tablezebra
tabularjs
tabularjs2
tabulatordownload
tagcanvas
tensorflowgan
tensorflowjs
tensorflowjsbasic
tensorflowjscnn
tensorflowjssinewave
tensorflowjssound
tensorflowmobilenet
tetrahedronfractal
tetrahedronfractalfolding
tetris
textarea
textareaauto
textareadiv
textareadiv2
textmaskimage
theirorthere
thesaurus
threejs
threejs2
threejs3
threejs4
threejsgltf
threejstokyo
tiles
toaster
tooltip
transition
transitionexpandabledropdown
treeview
treeview2
tricks
tshirt
tshirt2
tshirt3
turningpages
unsplash
urlblob
urlblob2
userdefinepoints
vector
videos
videos2
visualsort
vue
w2ui
w2uientertextdialog
webcam
webgl
webgl2
webgl3
webgl4
webgl5
webglbasic1
webglbasic2
webglcube
webglfov
webglfrustum
webgljson
webglleaves
webgllighting
webglorthographic
webglpoints1
webglpoints2
webglpoints3
webglsquare
webgltexture1
webgltexture2
webgltexture3
webgltransforms
webgltriangle
webgpu
webgpu10
webgpu11
webgpu12
webgpu13
webgpu14
webgpu15
webgpu16
webgpu17
webgpu2
webgpu3
webgpu4
webgpu5
webgpu6
webgpu7
webgpu8
webgpu9
webgpubars
webgpubuffers
webgpubuffers2
webgpucellnoise
webgpuclouds
webgpuclydescope
webgpucompute
webgpucubemap
webgpucubemap2
webgpudeferred
webgpudepth
webgpudof
webgpudrops
webgpuetha
webgpufire
webgpufractalcubes
webgpuglassrain
webgpugltf
webgpugltf2
webgpugrass
webgpugrid
webgpukernel
webgpukleinian
webgpulabupdates
webgpulighting
webgpumandelbrot
webgpumeta3d
webgpumetaballs
webgpumouse
webgpunoise
webgpunormalmapping
webgpuobj
webgpuparallax
webgpuparallax2
webgpuparallax3
webgpuparallaxshadow
webgpuparallaxshadow2
webgpupixel
webgpuquad
webgpuray1
webgpuraytracing
webgpuraytracing2
webgpushadowmaps
webgpushadowmaps2
webgpusierpinski2d
webgpusierpinski3d
webgpusinusoid
webgpussao
webgpustadiumobj
webgpuswirl
webgputestpipe3
webgputoon
webgputopology
webgputt
webgpuvolcloud
webgpuwater
webgpuwireframe
webgpuwireframe2
webnn
webnnconv2d
webnnlstm
webnnpytorch
webnntraining
webnnwithsynaptic
webnnwithsynaptic2
webnnwithsynapticsinwave
webnnwithtensorflow
webpcanvas
webworkers
webxr
webxr2
wiggly
wikipedia